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This editorial refers to ‘Systemic gene transfer enables optoge-
netic pacing of mouse hearts’ by C.C. Vogt et al., pp. 338–343.

Imagine having the means to fully control excitation in the heart—to be
able to triggerwaves atprecise locationsandwith desired properties and
to be able to precisely manipulate such waves, including to selectively
overwrite them (that is, to terminate an arrhythmia without brute
force); imagine being able to do all this in the intact heart, in vivo, by
light; imagine being able to ‘see’ all this in real time, optically. The idea
of ‘all-optical cardiac electrophysiology’1,2 may seem like science
fiction, but recent advances in optogenetics3 –6 make it more and
more tangible.

New technologies for cell-specific fast optical sensing or optical actu-
ation have profoundly impacted neuroscience over the last decade and
have become instrumental in the mechanistic dissection of brain func-
tion, in vivo.7 These techniques rely on genetically encoded proteins,
i.e. require genetic modification in the cells and tissues of interest, and
most often employ transgenic animals. The cardiovascular area is
lagging behind, and such transgenic mice, expressing optogenetic
sensors and/or actuators, are still not widely available. Notably, the
new CHROMus resource,8 sponsored by the National Institutes of
Health in the USA, promises to supply a variety of relevant transgenic
mouse models for the cardiovascular system, enabling optogenetic ma-
nipulation and imaging. Furthermore, new gene editing techniques open
thedoor toaffordable commercial generationofdesired transgenicmice
or even larger transgenic animals in a shorter time frame. Although the
transgenic approach is highly valuable for mechanistic studies, transla-
tional relevance requires the pursuit of alternative (non-transgenic)
ways for genetic manipulation. Quick and effective cell-mediated,9

adenoviral, or lentiviral expression of optical actuators in neonatal and
adult cardiomyocyteshasbeen shown in vitro,10 –13 but these approaches
have not been demonstrated in vivo. While optogenetic interrogation of
the mammalian brain in freely moving animals has become common
place, comparable in vivo optogenetic manipulation of cardiac function
is yet to be realized; a robust way to inscribe light sensitivity in the
intact heart or heart structures of interest is a requisite step towards
this goal.

Sasse’s laboratory first demonstrated optogenetic manipulation of
the mammalian heart using transgenic mice.14 Following on this pioneer-
ing work, in this issue, they15 report a minimally invasive non-transgenic
approach to cardiac optogenetics for in vivo applications. A relatively
straightforward systemic viral delivery of a depolarizing opsin,

channelrhodopsin2 (ChR2), in adult mouse hearts is demonstrated,
and robust optical responsiveness is confirmed at different regions of
the ventricles in open-chest experiments. Employing endovascular
gene delivery of ChR2 by adeno-associated virus serotype 9 (AAV9),
with known high cardiac tropism,16 Vogt et al.15 achieve an impressive,
almost exclusively cardiac-specific, expression despite the use of a ubi-
quitous (CAG) promoter. While the wild-type AAVs feature unique
site-specific integration in the genome,17 the AAV vectors devoid of
viral genes, as used in this study, do not integrate in the genome but, re-
markably, retain coveted long-term expression (10 months demon-
strated here, 10 years seen in a patient18), seemingly without
disruption of other genes. The low immunogenicity of AAVs that
makes them an attractive tool for gene therapy in humans19 was also
confirmed here, with no inflammation reported.

The advantages of the reported minimally invasivemethod, compared
with transgenic approaches for cardiac optogenetics, include: (i) easy
scalability to larger animals (including established cardiac disease
models), where in vivo insertion of optical conduits for stimulation or
imaging is feasible;20 (ii) robust combination of genetic manipulations
in the same animal, e.g. combining spectrally compatible actuators and
sensors, or combining opsins with depolarizing and hyperpolarizing
effects for bi-directional control by light; and, importantly, (iii) the ap-
proach provides a path to potential clinical translation. Considering
the success of AAV-based clinical trials, including the CUPID trial21 for
heart failure patients, this is an important and relevant step, even if
basic science applications are the main current focus of this technology.

The AAV-mediated optogenetic transformation is not without pro-
blems. Naturally occurring neutralizing antibodies make this approach
somewhat subject-specific, though out of all 13 known serotypes,
encountering antibodies against AAV9 is the least likely (found in
,20% of humans).22 This may have been a contributing factor in the
lack of response in 26% of the studied animals by Vogt et al.15 Further-
more, specificity of expression is dose-dependent, e.g. viral doses
higher than the employed here (2 × 1011 viral particles per mouse)
can yield non-myocardial expression for AAV9 in the diaphragm, liver,
and skeletal muscle, and can even cross the blood–brain barrier to
infect neurons and astrocytes,23 which may or may not cause side
effects. Cell- and tissue-specific promoters, combined with serotype
tropism, can alleviate these problems but often at the cost of weaker
expression. Interestingly, AAV9 has been reported to localize preferen-
tially to ischaemic areas (border zone),24 which can be leveraged for
region targeting in cardiac applications.
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A couple of findings by Vogt et al. are of particular interest. The
demonstrated ability to optically pace with relatively low-level blue
light in blood-perfused hearts (open chest)14,15 holds promise for
future in vivo use. Furthermore, the paradoxical inferior optical excit-
ability of atrial tissue, reported here and in transgenic mice,14,15 is at
odds with the theoretically and experimentally found higher excitability
in single atrial cells (compared with ventricular),10,14 and can be indica-
tive of the dominant role that cell–cell coupling plays in the response of
cardiac tissue to light (less-coupled atria are less responsive). Finally,
Vogt et al.15 estimated that a minimum cell transduction rate of 40%
was required for optical pacing in the ventricles. This number represents
a relevant constraint for investigative purposes, i.e. to allow robust
optogenetic perturbation of electrical activity at an arbitrary ventricular
location, with a relatively small optical conduit. However, the creation of
a space-localized optical biological pacemaker can be achieved by a
much smaller number of optogenetically transformed cells (by gene
or cell delivery), as long as the light-responsive region is consolidated,
to provide enough charge for driving the myocardium.

Following the demonstration of this elegant approach for minimally
invasive and stable optogenetic transformation of the heart, the next
logical step is to take full advantage of the cell specificity of optogenetic
targeting to strategic structures, e.g. sinoatrial node, atrioventricular
node, or His bundle, or for dissection of neural–cardiac interactions,25

as reported recently. Outstanding practical challenges to be addressed
concern the light delivery to a desired cardiac location in the intact
animal, for true in vivo optogenetic actuation, as commonly done in the
brain. Two main approaches to optically stimulate and optically record
appear feasible: endoscopically20 using fibre optics and borrowing
from microendoscopy applications in neuroscience, or through the im-
plantation of miniaturized devices.26 Additionally, spectral challenges
also need to be resolved, i.e. red-shifted opsins are desirable for
deeper penetration. However, the open-chest experiments by Vogt
et al. suggest that for optical actuation, light absorption by haemoglobin
may be an addressable problem, once the light is guided to the myocar-
dial location.

In summary, Vogt et al. have demonstrated that making the heart sense
light can be ‘easy’; yet, bringing the light to the heart still faces further
challenges in vivo. This work represents an important new develop-
ment—the first experimental model for cardiac optogenetics that
goes beyond in vitro and transgenic animal approaches. Such a model pre-
sents new opportunities to study the origin and control of cardiac
arrhythmias by precise optical perturbations in vivo. Furthermore, the
simplicity and the impressive reported efficiency of the method make
it attractive for a much wider range of applications (beyond optoge-
netics) for gene delivery to the heart.
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