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Optogenetics is an emerging technology for optical interrogation and control of
biological function with high specificity and high spatiotemporal resolution. Mam-
malian cells and tissues can be sensitized to respond to light by a relatively simple
and well-tolerated genetic modification using microbial opsins (light-gated ion
channels and pumps). These can achieve fast and specific excitatory or inhibitory
response, offering distinct advantages over traditional pharmacological or electrical
means of perturbation. Since the first demonstrations of utility in mammalian cells
(neurons) in 2005, optogenetics has spurred immense research activity and has
inspired numerous applications for dissection of neural circuitry and understanding
of brain function in health and disease, applications ranging from in vitro to work
in behaving animals. Only recently (since 2010), the field has extended to cardiac
applications with less than a dozen publications to date. In consideration of the
early phase of work on cardiac optogenetics and the impact of the technique in
understanding another excitable tissue, the brain, this review is largely a perspective
of possibilities in the heart. It covers the basic principles of operation of light-sensitive
ion channels and pumps, the available tools and ongoing efforts in optimizing them,
overview of neuroscience use, as well as cardiac-specific questions of implementation
and ideas for best use of this emerging technology in the heart.

channelrhodopsin; light-sensitive ion channels; optical mapping

THIS ARTICLE is part of a collection on Physiological Basis of
Cardiovascular Cell and Gene Therapies. Other articles ap-
pearing in this collection, as well as a full archive of all collec-
tions, can be found online at http://ajpheart.physiology.org/.

Background

Optogenetics refers to the use of light and optics in conjunction
with light-sensitive ion channels and pumps to perturb and control
cell, tissue, and animal function. Similar to the widespread use of
green fluorescent proteins and derivatives as reporters of gene
expression and cell function, optogenetics necessitates genetic
modification of the cells and tissues of interest, mostly by
heterologous expression of microbial opsins. Unlike the green
fluorescent protein-based observational/imaging tools, how-
ever, optogenetics also offers actuation possibilities and active
perturbation of cell function, e.g., change in membrane poten-
tial or cell signaling, with high cellular specificity and spatio-
temporal resolution, previously not attainable by pharmacolog-
ical or electrical means.

The term “optogenetics” was coined in 2006 by Deisseroth
et al. (32) and is commonly used to refer to specific new
developments; the use of microbial opsins as actuation tools,
though genetically encoded imaging probes, can also be in-
cluded (37). There has been a long-standing interest in light-
sensitive proteins, such as bacteriorhodopsin (BR), and in

developing optical means for control of biological function, but
a breakthrough development came with the discovery of a
faster type of microbial opsins that behave more like gated ion
channels, and particularly with the cloning of channelrhodop-
sin1 (ChR1) and channelrhodopsin2 (ChR2) by Nagel, Hege-
mann, Bamberg, and colleagues (97, 98), which expanded the
field beyond microorganisms. A seminal paper in 2005 by
Boyden et al. (17) and parallel studies by others (80, 96)
offered the first demonstration that such microbial opsins
(ChR2, in particular) can generate sufficient photocurrent and
can be effectively used to optically stimulate and control
mammalian neurons with very high temporal resolution. This
set the stage for cross-fertilization between the seemingly
unrelated fields of microbial photobiology and neuroscience,
resulting in over 1,000 publications with more than 23,000
citations to date for a new field, less than a decade old.
Following an explosive rise in the number of publications and
outlined opportunities, optogenetics was recognized as “Method
of the Year” for 2010 by Nature-Methods (31, 54, 105). Its
transformative potential has already been acknowledged in
elucidating brain circuitry and function in health and disease,
covered by multiple reviews (12, 25, 32, 41, 47, 89, 135, 136,
140, 141, 143, 144), yet expansion of this emerging technology
outside neuroscience and into areas like cardiovascular re-
search has surprisingly remained largely unexplored.

Optical sensing and actuation. Successful control of a dy-
namic system, e.g., the heart or the brain, requires detailed
understanding. Conversely, better mechanistic insight is gained
by means of active interrogation, i.e., fine control or actuation
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in conjunction with passive observations or sensing. The desire
to “look into” complex systems, such as the brain and the heart,
has driven the field of biomedical imaging toward the current
state of the art by requiring exceptional spatial and temporal
resolution to capture the phenomena of interest. Optical/fluo-
rescence imaging, in particular, spans several orders of mag-
nitude across spatial and temporal scales (124) and has become
an indispensable tool in basic research, including the cardiac
field, through the use of synthetic voltage- and calcium-sensi-
tive imaging probes as recently reviewed (38, 39, 55). Optical
sensing has evolved to capture fast events at the molecular
level. For example, monitoring localized calcium flux with
two-photon or total internal reflection fluorescence microscopy
can be used to indirectly track single (Ca2�) channel activity by
optical means (33, 34). Furthermore, optical records of single
(K�) channel conformations are possible with direct fluores-
cence labeling and total internal reflection fluorescence micros-
copy imaging to infer membrane voltage changes (87, 113,
116, 117). Certain applications of genetics for development of
new imaging probes, i.e., genetically encoded calcium and
voltage-sensitive proteins, are considered as part of the broader
view of optogenetics (5, 10, 37, 95), despite the lack of an
actuation component per se. Such genetically encoded sensors
offer cell-specific readout and the potential for long-term in
vivo monitoring of electrical activity compared with the widely
used organic dyes. Genetically encoded Ca2� sensors (86, 91,
92) have found widespread application; however, their use in
vivo has remained limited. Obtaining suitable temporal reso-
lution and reliable performance for genetically encoded optical
voltage sensors has been a challenge, mostly due to added
capacitive load to the membrane and severe interference with
innate cell physiology (90), which is also partially true for
calcium sensors, which interfere with intracellular Ca2� buff-
ering. Nevertheless, there are multiple promising developments
in this area (5), including the recent atypical use of microbial
opsins for voltage sensing (76).

In general, the passive sensing/imaging technology has ma-
tured enough to require respective developments on the inter-
rogation/actuation side, optical tools to perturb activity with
fine resolution (90). Developments have been under way for
over two decades to use light for perturbation and control. A
particularly desirable solution is the direct application of near-
infrared or infrared (IR) light for stimulation, without the need
of genetic or chemical modifications. For example, millisecond
pulses of IR light (1.8 �m) have been shown to trigger
mitochondrial Ca2� release in myocytes in vitro (34a) and have
been used to pace embryonic hearts in vivo (62). The mecha-
nism of stimulation by IR light always involves substantial local-
ized temperature changes and steep gradients (132), which likely
trigger depolarizing currents by changes in membrane capacitance
(112). Among the limitations of this approach are concerns about
the physiological limits of local temperature gradients required to
excite, energy needed to reliably achieve such perturbation,
insufficient temporal resolution (capacitive effects), and lack of
specific cell targeting. Other examples of optical actuation
include “caged” compounds, e.g., caged calcium and flash
photolysis for understanding the Ca2� control system in mus-
cle by Niggli and Lederer (100), using G protein-coupled
signaling and ligand-requiring opsins (chARGe) (138) or light-
controlled specialized ion channels (transient receptor potential
vanilliod 1 and transient receptor potential melastatin 8) by

Zemelman et al. (139), tools based on synthetic photoisomer-
izable azobenzene-regulated K� channels (SPARK) (13), or
light-gated glutamate receptors (LiGluR) by Isacoff and col-
leagues (120, 125). In general, all of the techniques listed
above share relatively high level of complexity and lack of
robustness, which determines their limited popularity or their
use only within a rather specialized field.

BR: nature’s archetypal optoelectric transducer. BR is one
of the simplest and the best studied optoelectric transducers
from the microbial (class I) opsins, found in archae, eubacteria,
fungi, and algae. A different class of opsins (class II) encom-
passes the mammalian G protein-coupled sensory rhodopsins,
which are not among the commonly used optogenetics tools.
BR, a protein with seven transmembrane (TM) domains, acts
like a light-gated active ion pump; it captures photon energy via
its covalently bound chromophore, retinal, and moves protons
against the electrochemical gradient from the cytoplasm across the
membrane. In its native environment, BR provides energy for
ATP synthesis via its light-fueled proton pumping action. Since
their discovery (102), the microbial opsins have spurred a lot of
interest and have been viewed as potential components for
bioelectronics and a new generation of optical memory (16,
126) due to offered ultra-fine spatiotemporal control by light.
The latter is of equal interest in control of eukaryotic cells.
Structurally and functionally, BR provides good insight for
optogenetics as it shares high homology with all (class I)
opsins currently in use.

The new generation of optogenetics tools: defining features.
Current-day optogenetics was spearheaded by the characteriza-
tion and cloning of ChR1 and especially of the higher-conduc-
tance light-sensitive ion channel ChR2 from green algae by
Nagel, Hegemann, Bamberg, and colleagues (97, 98) in 2002
and 2003, followed by the first robust demonstrations of the
use of ChR2 to stimulate mammalian cells in 2005 (17, 80, 99).
Upon heterologous expression, these microbial ion channels
provide excitatory (cation mediated) current with relatively fast
kinetics (27, 82) and can effectively trigger electrical impulses
(action potentials) in excitable cells upon light stimulation at
relevant physiological rates. The demonstrated utility in neu-
roscience revived interest in other types of microbial opsins,
discovered earlier and extensively studied within the microbial
photobiology field but never considered for use in mammalian
physiology. These include the chloride pump Halorhodopsin
(HR) (78, 88) and the BR-like proton pump Archaerhodopsin
(AR) (59). Both were proven capable of mediating inhibitory/
hyperpolarizing action on membrane voltage in mammalian
cells (30, 45).

What makes the recent optogenetic tools (several types of
microbial opsins) more practical compared with earlier systems
are the following distinguishing characteristics: 1) simplicity of
expression and operation without exogenous cofactors, offer-
ing the attraction of a single-component system; 2) apparent
minimal interference with endogenous function (much less
than genetically encoded voltage and calcium sensors) and
remarkable reliability of use on a large scale, in vitro and
in vivo; 3) offered specificity, i.e., selective cell-type targeting;
4) very high spatiotemporal precision of manipulation not
achievable by other known actuation techniques; 5) robustness
and range of action within the same paradigm, i.e., excitatory
and inhibitory effects can be encoded; and 6) relatively low-
light energy required for activation compared with IR stimu-
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lation, for example. All of these features contributed to the
instant widespread biomedical application of this new technol-
ogy.

ChR2 Biophysics and Operation

ChR2 from Chlamydomonas reinhardtii, cloned by Nagel
et al. in 2003 (98), is the prototypical and currently most
widely used optogenetic tool. Like BR, it belongs to class I
microbial opsins, all of which use retinal as a chromophore
(light-sensing element). Unlike BR, ChR2 is a classical ion
channel (not an active pump) and upon opening it conducts
cations along the electrochemical gradient.

The chromophore, all-trans-retinal, is covalently bound to
the ion channel, and the complex does not undergo dissociation
seen for class II mammalian rhodopsins, where the retinal-opsin
complex is reassembled/disassembled upon each stimulus (52).
Upon interaction with a photon, all-trans-retinal undergoes
isomerization to 13-cis-retinal, thus triggering the ion channel
opening. All-trans-retinal, derived from intake of vitamin A con-
taining nutrients, is only present in small amounts in nonretinal
and nonembryonic tissues (�0.5 nmol/g) (68). It was a seren-
dipitous finding that in most vertebrate cells and systems, there
is enough all-trans-retinal naturally to form functional ChR2
complexes. This is even more surprising in cell culture, where
the source of vitamin A must be from serum/cell culture
impurities. To date, there are no systematic studies demonstrat-
ing whether and how retinal availability varies between cell
and tissue types and whether it can be a limiting factor in the
light responsiveness of different cell types modified with
ChR2.

Similar to BR, ChR2 has seven TM domains. It has molec-
ular masst of 77 kDa and a total of 737 amino acids, �300 of
which located at the amino-terminus fully define its photocur-
rent generation (69). The crystal structure of ChR2 was re-
cently solved (69, 94): it revealed that the conductive pore is
defined by TM1, -2, -3, and -7 and that TM7 is critical for the
interaction with retinal, whereas TM2 determines channel
selectivity and conductance. ChR2 has higher energy barrier
for excitation compared with BR; its spectral response peaks at
around 470 nm (570 nm for BR).

ChR2 conducts cations with differential selectivity in the
following order (H� � Na� � K� � Ca2� . . .) (82) (Fig. 1).
Thus, for physiological membrane potentials, ChR2 provides
exclusively inward current and has a reversal potential close to
0 mV with prominent rectification properties, i.e., minimal
outward current (27, 40, 48, 64, 82, 96). Several competing
theories have been put forward about the mechanism of recti-
fication, including it being a single-channel property defined by
an asymmetric barrier (40) or macroscopic property resulting
from the kinetics of multiple ion species interacting with the
channel (48).

Upon delivery of a light pulse with proper wavelength (470
nm) and of sufficient irradiance (in mW/mm2) for excitation,
ChR2 generates photocurrent with a fast peak and relaxation to
a steady-state component (Fig. 1). Higher irradiance and more
negative voltages speed up the onset of the peak and the
relaxation to steady state. Even at room temperature, all time
constants are under 20 ms (27, 64). The single-channel con-
ductance for the wild-type ChR2 is relatively small, and the
few reported values vary widely: from 40–90 fS (40, 145) to
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Fig. 1. Biophysical properties of channelrhodopsin2 (ChR2). A: ChR2 is a light- and voltage-dependent ion channel; all-trans-retinal, intracellularly available
and covalently bound to ChR2, acts like a chromophore (sensing photons) to facilitate ChR2 opening and the transport of cations with differential preference
from H� to Ca2�. B: ChR2 produces voltage- and light-dependent current. The resultant current is predominantly inward/excitatory with a fast peak and sustained
component; ChR2 exhibits strong inward rectification with a reversal potential around 0 mV [current-voltage relationship for the sustained component shown
from Jia et al. (64)]; shown is also a current-irradiance relationship and selected traces for ChR2 current under different voltage clamps (top) and irradiance levels
(bottom). Vm, membrane potential.
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0.25–2.42 pS (82), depending on the method of estimation. For
comparison, single Na�-channel conductance in muscle cells
can be orders of magnitude higher than the ChR2 conductance,
as high as 18 pS (115). Zimmermann et al. (145) used freeze-
fracture electron microscopy and particle counting as well as
whole cell conductance and capacitance measurements to es-
timate ChR2 density of expression (typical case) and found
about 2,000 channels/�m2. Taken together with certain prob-
ability of being opened, this allows for whole cell current
estimates. As discussed below, one of the first ChR2 single
amino-acid mutants (H134R) was generated to increase con-
ductance by two- to threefold with minimum sacrifice of
kinetics (46, 96).

Conceptual and quantitative understanding of the function of
ChR2 is aided by recent mathematical models, proposed by
Hegemann and colleagues (53) and modified by others (49,
101, 121). A four-state model is currently favored, with two
open states (a high-conductance and a low-conductance, light-
adapted one) and two closed states. The photon absorption and
isomerization of retinal is a near-instantaneous process (130),
so that ChR2 conformational changes, after light sensing,
determine its photocurrent kinetics. Current models reflect
reasonably well light dependence but oversimplify voltage
dependence.

The Optogenetics Toolbox

Different microbial opsins, developed and adopted for use in
mammalian cells, compose the “optogenetics toolbox” (Fig. 2A).
These include both proteins that generate depolarizing/excit-
atory currents, e.g., channelrhodopsins, and proteins that pro-
duce inhibitory/hyperpolarizing currents, such as the chloride
pump HR from Natronomonas pharaonis adopted for mam-
malian use (eNpHR) (45) and some BR-like proton pumps,
e.g., AR-3 from Halorubrum sodomense (30) and the shorter
wavelength-activated pump from the fungus Leptosphaeria
maculans (Mac) (30).

AR is the most potent inhibitory opsin to date. When
compared with HR and Mac, it offers larger photocurrent and
faster recovery from inactivation. Similar to HR and Mac, AR
provides an outward current, with a highly negative reversal
potential and only about 20% drop in current when going from
0 to �120 mV. By its action, despite being an efficient proton
pump, AR changes the H� concentration (pH) only mildly, i.e.,
the intracellular pH can increase by about 0.15 for 1 min of
continuous illumination (30). The single channel conductance
of AR is unknown but by whole cell current is comparable in
amplitude to the ChR2 current. For example, about 1-nA
current was induced by strong illumination in neurons (30) for
unknown expression levels.

Having both excitatory and inhibitory optogenetics tools of
comparable performance truly opens the possibility for optical
control of membrane potential, i.e., shaping the action poten-
tials and/or the frequency response of the system. A method for
optimized tandem expression of excitatory and inhibitory
opsins has been recently developed (73). Genetic engineering
is currently used to expand and optimize available opsins in
three important aspects: light sensitivity, speed, and spectral
response (Fig. 2B). These efforts, mainly carried out in the
laboratories of Deisseroth, Bamberg, Hegemann, Tsien, Boy-
den, and several others, have resulted in various ChR2 mutants

with single amino-acid substitutions, including the higher-
conductance H134R (96), T159C (14), and ET/TC (14); the
Ca2� permeable CatCh (72) and the speed-optimized ChETA
(50); hybrids of ChR1 and ChR2 (ChIEF) (82); and hybrids
of ChR1 and VChR1 (C1V1) for red-shifted variants (142),
among others. Additionally, ChR2 variants were molecularly
engineered to prolong open state and obtain stable switch
properties (15). Figure 2B attempts to qualitatively place some
of these modified ChR2 derivatives in the parameter space of
sensitivity, speed, and spectral response. In most cases, opti-
mization of one aspect, e.g., conductance, comes with a trade-
off in another aspect, e.g., speed. Table 1 summarizes important
parameters for these available voltage actuators. A more extensive
quantitative comparison of existing genetically engineered opsins
can be found in several excellent reviews (14, 89, 136). Other
efforts to improve the optogenetics toolbox include reduction of
toxicity, better membrane targeting, better cell specificity, and
general optimization of expression (25, 47).

Optogenetics in Neuroscience

Neuroscience applications have successfully used the spec-
ificity offered by optogenetics to dissect neural circuits and
connectivity, linking specific neuron populations to behavior
and disease presentation. These studies include applications to
better understand learning (58), olfactory processing in vivo
(8), depression (3), narcolepsy (2), sleep disorders (26), fear
(65), and addiction (84). Optogenetics was used to validate
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Fig. 2. The optogenetics toolbox. A: available optogenetic tools for manipu-
lation of membrane potential include excitatory/depolarizing ion channels,
e.g., channelrhodopsins and derivative mutants and inhibitory/hyperpolarizng
pumps from 2 major classes: proton pumps like bacteriorhodopsin (BR), archae-
rhodopsin (AR), and Leptosphaeria maculans (Mac) and chloride pumps like
halorhodopsin (HR). B: genetic engineering is used to expand and optimize
available opsins in 3 main aspects: light sensitivity, speed, and spectral response;
some examples are shown with their relative position in this parameter space,
including direct ChR2 mutants with single amino-acid substitutions (H134R,
T159C, ET/TC, the Ca2� permeable CatCh, and the speed-optimized ChETA),
hybrids of ChR1 and ChR2 (ChIEF), and hybrids of ChR1 and VChR1 (C1V1)
for red-shifted variants. WT, wild-type.
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blood oxygen level-dependent MRI signals via direct links to
local electric events (79). More translational studies tackled
questions related to epilepsy and termination of seizures (123),
Parkinson’s disease, and deep brain stimulation to counteract it
(7, 44, 77), countering visual degeneration in retinitis pigmen-
tosa (21), resuming respiratory control (43), better optical
nerve stimulation of skeletal muscle (83), and optimized stem
cell differentiation (119, 131). This is a small subset of the
wide spectrum of studies conducted thus far; recent more
comprehensive reviews provide further information (41, 136).

Beyond Neuroscience and Toward Cardiac Applications

Overview of early work in cardiac optogenetics. Starting in
2010, only a couple of publications have appeared to date that
extend optogenetics utility to cardiac muscle. Arrenberg et al.

(9) used a zebra fish model to express both excitatory (ChR2)
and inhibitory (HR) opsins. Employing structured illumination,
they demonstrated the use of the optogenetics to spatially map the
exact pacemaking region in zebra fish during development. They
also demonstrated reversible range of rhythm disorders triggered
optically. Bruegmann et al. (20) published the first mammalian
application of optogenetics in heart. They combined viral
expression of a ChR2 variant with a cytosine-adenine-guanine
promoter into mouse embryonic stem cells with targeted dif-
ferentiation and purification of embryonic stem cells-derived
cardiomyocytes for in vitro demonstration of optical pacing.
Furthermore, they generated transgenic mice with cardiac
ChR2 expression, in which normal rhythm was perturbed
in vivo by light pulses and focal arrhythmias were induced by
long pulses. Simultaneously and independently, our group

Table 1. Voltage and biochemical actuators

Voltage Actuators Based on Microbial (Class I) Opsins

Excitatory/depolarizing ChR-based actuators

Opsin/mutation Actuation mechanism
Spectrum
�abs, nm

Biophysical properties compared with wild-type ChR2

ReferenceIp, nA Iss/Ip �ON, ms �OFF, ms �INACT/�DES, ms �REC (S1–S2), s

ChR2 Cation ion channel,
H��Na��K��Ca2�

470 �1* �0.25* �5* �10* �50* �5* (27)

ChR2-H134R Cation ion channel,
H��Na��K��Ca2�

470 1 11 � � � � (96)

ChR2-T159C Cation ion channel,
H��Na��K��Ca2�

470 1 � � 1 � � (14)

ChR2-ET/TC (ChETATC) Cation ion channel,
H��Na��K��Ca2�

470 1 1 � � � 22 (14)

CatCh (ChR2-L132C) Ion channel, 1Ca2�

conductance
474 1 1111 1 11 11 — (72)

ChETA (ChR2-E123A) Cation ion channel,
H��Na��K��Ca2�

470 2 111 � 2 22 22 (50)

ChIEF (ChR1 � ChR2) Cation ion channel,
H��Na��K��Ca2�

450 1 1111 11 11 11 — (82)

C1V1 (ChR1 � VChR1) Cation ion channel,
H��Na��K��Ca2�

540 1 11 1 111 11 1 (137, 142)

Step-function opsins,
C128S/D156A

Cation ion channel,
H��Na��K��Ca2�

470 (on) 1 1111 1 1 Minimal
inactivation

— (11, 15)
535 (off)

Inhibitory/hyperpolarizing opsin actuators

Biophysical properties

Opsin
Ip, pA/pF; nA

(mW/mm2) Activation, ms Deactivation, ms �REC (S1–S2), s

HR (eNpHR) Cl� pump 590 4; 0.15 (�10) — �OFF �10 �50 (30, 47)
Arch/ArchT H� pump 566 12; 0.35 (�10) �5 (onset);

�300 (to
plateau)

�OFF �10, and
�400 (to full
elimination of
the effect)

�30 (30)

Mac H� pump 540 9; 0.25 (�10) — �OFF �50 — (30)

Biochemical Actuators Based On Class II Opsins

Construct �ON, s �OFF, s

Opto-	2-AR 1Gs protein signaling 500 �2 �3 (4)
Opto-
1-AR 1Gq protein signaling 453 �0.1 �0.5 (4)
bPAC (cAMP) 1cAMP 455 �23 �12 (118)

For voltage actuators, channelrhodopsin (ChR)-based excitatory and inhibitory voltage actuators are listed along with some quantitative parameters compared
with values for wild-type ChR2. Listed are the mechanism of actuation, the peak absorption wavelength (�abs), peak current (Ip), ratio of sustained current-to-peak
current (Iss/Ip), time constant of activation (�ON), time constant of deactivation (�OFF), time constant of inactivation/desensitization (�INACT/�DES), and time
constant of recovery from inactivation upon consecutive stimuli (�REC). *Actual values vary with irradiance, voltage, temperature, cell type, etc. Some values
for inhibitory opsins are not known. For biochemical actuators, 3 examples are given based on class II opsins along with their mechanism of action and
characteristics. See main text for definitions of other abbreviations.
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demonstrated a nonviral optogenetic stimulation (63, 64). Con-
sidering the heart’s dense and well-coupled environment,
we used cell delivery to demonstrate optical pacing in vitro.
We termed this strategy a tandem cell unit (TCU) approach,
where dedicated (nonexcitable) donor cells expressing light-
sensitive ion channels (ChR2) and capable of electrical cou-
pling with cardiomyocytes, can effectively inscribe light sen-
sitivity to cardiac tissue. Our study also demonstrated the first
integration of high-speed/high-resolution optical imaging with
optogenetics-based actuation for a fully optical interrogation of
excitable tissue and quantitative comparison of wave propaga-
tion upon optical versus electrical stimulation. Two more in
vitro studies were published approximately at the same time,
one using a cardiac cell line HL-1 in which ChR2 was ex-
pressed by electroporation (56) and the second using lentiviral
delivery of ChR2 into human embryonic stem cells, followed
by cardiomyocyte differentiation (1). Both studies applied
microelectrode arrays to confirm electrical response upon op-
tical stimulation. Abilez et al. (1) combined their experiments
with computational modeling of the function of ChR2 into
cardiac tissue.

Cardiac electrophysiology and optogenetics. When com-
pared with neuronal electrophysiology, cardiac action poten-
tials are longer and more complex, reflecting the close integra-
tion of electrical and mechanical function, with a prominent
role for Ca2� as intermediary. Physiologically relevant fre-
quencies of electrical response are about an order of magnitude
lower than for neurons. Myocytes are big and tightly coupled
via gap junctional proteins, forming a syncytium. Excitation
waves, under normal conditions, follow well-known paths, as
reflected in the highly regular ECG. Albeit cell-type variation
is lower than in the brain, the heart still features cell subpopu-
lations with distinct electrophysiological profiles, e.g., atrial
and ventricular myocytes as well as conduction system cells,
including sinoatrial pacemaking cells, atrioventricular nodal
cells, and Purkinje cells. Finer subdivisions exist within these
classes, e.g., transmural distinction of ventricular myocytes or
subpopulations of cells within the sinoatrial node.

In consideration of these characteristics, it is likely that
optimization of optogenetics tools and their specific application
follow different routes compared with neuroscience. For ex-
ample, higher-speed opsins are not as relevant for the heart;
higher conductance opsins are quite relevant considering the
high electrotonic load. While in neuroscience the ideal excit-
atory pulses are very brief and information is encoded mostly
by the frequency of the pulses, for cardiac applications it may
be interesting to explore longer, lower intensity pulses. The
importance of the waveform of the stimulating pulse both for
pacing and defibrillation has been long recognized in the
cardiac literature (42, 66, 106, 107, 111, 127). More specifi-
cally, energy minimization has been pursued via waveform
optimization (106), and it is known that a typical rectangular
monophasic pulse, for example, does not provide the most
efficient stimulus (66). It can be speculated that the conceptu-
ally different optogenetic mode of stimulation (Fig. 3B) may be
inherently optimal. This is due to the stimulus (the actual
induced photocurrent) being shaped based on instant real-time
feedback about the membrane voltage; i.e., unlike electrical
pulse stimulation, the ChR2 current pulse effectively will
terminate when a certain voltage is reached because of the
channel’s voltage sensing and inward rectification. Therefore,

it may be more energy efficient, especially at longer low-
irradiance pulses. It is harder to speculate about the perfor-
mance of optogenetic pulses for cardioversion and defibrilla-
tion; computer modeling and in vitro experiments can provide
more insight how the prestimulus state may affect the outcome.
Figure 3 illustrates the response of a ventricular myocyte to
comparable electrical and optical stimulation using computer
simulations (unpublished data) with the ten Tusscher ventric-
ular cell model (122), including a version of ChR2 modified
from earlier papers (101, 121).

Inscribing light sensitivity in cardiac tissue. Common tech-
niques for genetic modifications, including for optogenetics,
are shown schematically in Fig. 4A. Transgenic mice present
an attractive experimental model and can be generated with
specifically targeted cell types. Various strains of transgenic
ChR2-expressing mice were developed by Feng and colleagues
for in vivo neuroscience research (128), and many of these are
currently available through the Jackson Laboratory. To date, no
commercially available mice with cardiac expression of opto-
genetic tools have been produced. Recently, Witten et al. (134)
have developed a more elegant general strategy for cell type-
specific expression of opsins in rats. They used recombinase-
driver rat cell lines that can drive the gene expression in
specific cell types with Cre recombinase under the control of
relatively large regulatory regions (�200 kb). This approach
allows for faster generation of experimental rat models of
interest than transgenic animals and will likely be used in
cardiac applications as well. Such Cre driver lines confer
another level of selectivity when combined with viral vector
delivery, in addition to promoter-determined selectivity. For
cardiac applications, one can envision interest in targeting the
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Fig. 3. Optogenetic stimulation of cardiac cells. A: human ventricular myo-
cytes, stimulated electrically (5 ms, 10 pA/pF) and optically (10 ms, 5
mW/mm2), produce very similar action potentials. B: the underlying ChR2
current during a cardiac action potential is fast inward current that gets
reversed by the change of voltage and becomes briefly outward for positive
voltages. Inset: optogenetic stimulation is inherently waveform optimized
(compared with electrical rectangular pulses) because of the built-in feedback
control by voltage, i.e., the inward current injection self-terminates once the
membrane has been depolarized. The results are from computer simulations
with the ten Tusscher myocyte model, integrated with a ChR2 model, modified
from Nikolic et al. (101).
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conduction system as a whole or regions of it, i.e., just the
sinoatrial node or just the Purkinje fibers. While specific gene
expression (HCN4, Cx40) or locally enriched transcription
factors, such as Contactin-2 (103), have been investigated for
the conduction system, more work is needed to make relevant
promoters available for cell-specific targeting, similar to the
arsenal available for neuroscience.

In addition to transgenic animals, gene targeting in vitro or
in vivo can be achieved by direct DNA delivery (by electro-
poration or other transfection methods), viral delivery, or cell
delivery. Through concerted efforts to optimize the optogenet-
ics toolbox, multiple laboratories use repositories like Addgene
and make their constructs publicly available. Of the shown
delivery methods (Fig. 4A), viral delivery using lentivirus or
adeno-associated virus (AAV) is the most common in optoge-
netics applications (136) because of the high efficiency and
potential specificity if a cell/tissue-specific promoter is used.
Successful long-term expression with lentivirus and AAV has
been demonstrated not only in mice (2) and rats (7) but also in
primates (51). For cardiac use, optimization of viral delivery
will involve a search for the most suitable AAV serotype and
small promoters for cell-specific expression (the small payload
of AAV of �4.7 kb limits promoter size). The cell delivery
approach (Fig. 4B) is based on the TCU strategy and relies on
coupling of the donor cells with the native myocytes with
coupling strength beyond 2 nS (64). It is particularly relevant
to cardiac applications and use of stem cell delivery. It does not
address cell-specific labeling of native myocytes, but it allows
for optimization of the donor cells for better opsin performance
in vivo.

When applying optogenetics to cardiac tissue, it was
unknown a priori if the required chromophore for ChR2
operation can be found in sufficient amounts. For example,

bulk tissue measurements with chromatography and UV
techniques (HPLC/UV) (67, 68) indicate that cardiac muscle
may contain lower amounts of endogenous retinoids compared
with liver, kidney, adipose tissue, and the brain. Yet, the few
cardiac applications discussed above did not use exogenous
retinal, thus suggesting that some (possibly sufficient) amounts
of retinal were available. It is interesting to note that the human
embryonic kidney cells (HEK293) used in our TCU experi-
ments (64) and in other optogenetics studies are known for
their optimized retinoid machinery (19), whereas myocytes are
most likely not. We also had some success with direct optical
stimulation of ChR2 cardiomyocytes in cell culture without
exogenous retinal addition (64).

Challenges for light access in the heart. In neuroscience
applications, precise injections for optogenetic targeting of
desired brain locations and implantation of stimulating or
recording devices are done by widely available stereotactic
systems. Furthermore, implantable devices evolved rapidly in
brain research since 2007 (7) to the current fully integrated
systems in freely moving animals, in some cases with wireless
powering (6, 129, 133).

An analogous approach to the stereotactic system is not in
place for cardiac gene or cell delivery. The challenge is to do
this in a live beating heart, without the firm support and point
of reference naturally offered by the skull for the brain. Optical
fiber conduits for imaging purposes have been developed
before for cardiac applications (22, 23, 57, 75); now this
intramural optrode approach may be adopted for possible
localized gene or cell delivery as well as optical stimulation
and recording. Alternatively, for optical stimulation, surface-
conforming solutions, where the device is moving with the
contracting heart, may come from recent new developments in
stretchable electronics and optoelectronics (70, 71), i.e., light-
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Fig. 4. Inscribing light sensitivity in cardiac tissue.
A: the most common approaches to optogenetic
transduction include the generation of a transgenic
animal or different ways of gene delivery: direct
plasmid transfection, virally mediated, or cell me-
diated; the relative efficacy and safety of these
approaches is depicted. B: the cell delivery ap-
proach works for well-coupled cells like in the
myocardium where a tandem cell unit can be
formed between a nontransduced myocyte and a
nonexcitable donor cell; shown are a canine adult
ventricular cell and a donor ChR2 HEK cell where
optical stimuli (at 0.2 Hz) drive action potentials
in the myocyte [modified with permission from Jia
et al. (64)].
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emitting diode matrixes can be organized to conform and
follow accessible surfaces, epicardial or endocardial, with
minimally invasive procedures similar to the use of inflatable
balloons. As dense and highly scattering medium, the heart
may require further efforts in developing red-shifted optoge-
netics tools, similar to VChR1 and C1V1 (142). Two-photon
excitation offers an alternative way of increasing wavelength.
Recently, two studies (104, 108) confirmed effective two-
photon excitation of ChR2, reporting high two-photon absorp-
tion cross section of about 260 GM at 920 nm; thus it may be
possible to stimulate deeper tissue (�0.5 mm) by surface
illumination even in the dense cardiac muscle. Nevertheless,
accessibility of certain endocardial conduction system struc-
tures may provide some immediate opportunities for interest-
ing research questions amenable to optogenetic solutions.

Energy for optical stimulation. The optical stimulus strength
needed to trigger a response is typically measured in units of
irradiance (in mW/mm2). Strength-duration curves link mini-
mum irradiance and pulse duration and capture the overall
energy for optogenetic stimulation (Fig. 5A). The energy will
be influenced by a multitude of factors, including expression
levels and functionality of the opsins, the host cell electrophys-
iological milieu (balance of depolarizing and repolarizing cur-
rents), the cable properties of the tissue and electrotonic load
for activation, the efficiency of light delivery/penetration, and
so on. In Fig. 5A, strength-duration curves are assembled from
published data for cardiac cell monolayers with the TCU
approach (64) and for ventricular and atrial tissue in transgenic

mice (20); these are compared with the much higher values
reported for stimulation in neural applications in vitro and
in vivo, including Boysen et al. (17), Cardin et al. (24), and
Wang et al. (128). The results are surprising if we only
consider cable properties. In such case, neural applications
should have not required higher energies than cardiac. Further-
more, in Bruegmann et al. (20) atrial myocytes were found to
express ChR2 at higher levels and produce bigger functional
currents than ventricular myocytes. Yet, when they were tested
at the tissue level, a puzzling result was the higher energy
needed to excite atrial muscle than ventricular tissue, which
theoretically should have presented bigger electrotonic load.
Clearly, multiple factors are at play. Considering that gene
targeting will rarely result in perfectly uniform expression, we
also explored computationally how the energy of stimulation
will depend on the spatial distribution of gene (viral) or cell
delivery (Fig. 5B). Direct ChR2 expression in native myocytes
(gene delivery) and indirect expression via nonexcitable cells
(TCU approach of cell delivery) were simulated using a sto-
chastic algorithm to yield different levels of localization and
consolidation of the islands of ChR2-expressing cells. The
results show that lower energy is needed for (viral) gene
delivery in myocytes if a single localized area is transduced;
while for a sparser distributed expression, inert cell delivery
may be more efficient (18).

When it is considered for cardiac pacing, an interesting
question arises if optogenetic activation can be more energy
efficient than electrical stimulation. Our in vitro experiments
hinted at such possibility (64). If one compares directly the
charge delivered by ChR2 current and electrical current in-
jected in a rectangular pulse, then the waveform in the two
cases (Fig. 3) suggests that optical stimulation may yield
benefits for longer pulses but the instant-upstroke electrical
pulses are more efficient at short durations. Without a doubt,
stimulus delivery to the site of interest will profoundly affect
the overall energy.

Unique cardiac utility. It has to be emphasized that the
power of optogenetics is in offering unique ways to better
address basic science questions. Whether it can transcend into
more translational therapeutic uses remains to be seen for
neuroscience and for cardiac applications.

As a basic science tool in cardiac research, optical pacing
can offer contactless stimulation with higher spatiotemporal
resolution, cell selectivity, and new ability for parallelization.
When compared with classical stimulation by an electric field,
optogenetics achieves better spatiotemporal addressing (cellu-
lar and subcellular) because of a combination of factors, but
most importantly: 1) selective cell type expression by virtue of
genetic targeting and 2) superior light focusing and controlled
delivery of desired and well-localized excitatory or inhibitory
action unlike the typical complex polarization induced by an
electric field, involving islands of opposite polarity (known as
virtual electrodes) around the target spot. These features can be
useful for a number of research questions. One set of problems
deals with probing and confirmation of cell-to-cell coupling,
e.g., cardiomyocyte-fibroblast coupling or coupling between
donor (stem) cells and host cardiomyocytes in regenerative
cardiomyoplasty. Currently, there is no direct and specific
method to address these questions in vivo in the native tissue.
Optogenetics may offer solutions via selective cell type-spe-
cific expression and optical stimulation, if light access prob-
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Fig. 5. Energy for optical stimulation of cardiac tissue. A: strength-duration
curves (irradiance and pulse duration needed to pass the threshold for stimu-
lation) are assembled from published data for cardiac cell monolayers with the
tandem cell unit approach and for ventricular and atrial tissue in transgenic
mice; these are compared with the much higher values reported for stimulation
in neural applications in vitro and in vivo: 1) data from multiple papers,
including Boyden et al. (17), Wang et al. (128), Cardin et al. (24); 2) data from
Bruegmann et al. (20); and 3) data from Jia et al. (64). B: energy to stimulate
depends on the spatial distribution of gene or cell delivery of ChR2: compu-
tational data [Boyle et al. (18)] show that lower energy is needed for direct
gene delivery in myocytes if a localized area is transduced; while for a sparser
distributed expression, inert cell delivery may be more efficient.
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lems are resolved. A second related set of problems deals with
initiation of focal arrhythmias. Suspected common sites, e.g.,
automaticity at endocardial Purkinje network locations (36,
110), can be systematically studied by cell-specific expression
and perturbation by light to induce or suppress such activity.
Critical contributions of different parts of the pacemaking and
conduction system can be probed, especially by inhibitory
opsins, as demonstrated in the zebra fish study (9). Such
approaches may not only help understand arrhythmia induction
but may offer new anti-arrhythmic strategies. A third set of
problems suitable for in vitro investigation are related to
mechanisms of reentrant arrhythmias and their termination.
Precise dynamic optical probing can be used to address the
exact nature of reentrant activation and the state of the reen-
trant core, spiral wave versus leading circle (61). The search
for mechanisms of atrial fibrillation (60) or ventricular fibril-
lation (29), mother rotor, wandering wavelets, or other, can be
better tackled by fine stimulation tools to establish vulnerabil-
ity, and may have real impact on devising better defibrillation
strategies.

Classical defibrillation works by synchronous depolarization
of a critical mass of the myocardium (�95%) using strong
electric shocks; lower energy alternatives are pursued by the
proper timing of multiple electrical shocks to interact with and
extinguish reentrant waves underlying an arrhythmic episode
(85, 109). Because of penetration depth issues, optogenetic
termination of arrhythmias (cardioversion and defibrillation) is
likely to explore methods similar to low-energy electrical

cardioversion without the need to capture 95% tissue. In
addition, when compared with electrical methods, optogenetics
offers superior localization control of excitatory or inhibitory
perturbations. Global hyperpolarization (or forced repolariza-
tion) is hard to achieve by electric fields; thus optical suppres-
sion offers a new tool. It is interesting to point out successful
termination of epileptic seizure activity by light (using inhib-
itory HR) in hippocampal tissue slices in vitro (123), as
epilepsy and cardiac arrhythmias share some mechanistic sim-
ilarities. The concerns with in vivo optical cardioversion and
defibrillation are not with the magnitude of the photocurrents to
overwrite ongoing activity but with the need for spatially
distributed light delivery to successfully affect tissue.

It is unclear whether optogenetics can prove a “disruptive
technology” for in vivo pacing and defibrillation, considering
the success of the current devices. However, if potential safety
concerns are resolved and if critical benefits are demonstrated,
e.g., substantial battery life extension or pain reduction for
defibrillation, then perhaps optical devices will be a good
alternative.

Optogenetics strengths may yield other translational solu-
tions. The possibility to combine optical stimulation with
optical readout is particularly attractive (Fig. 6). After some
early reports of single site or low-resolution optical measure-
ments in conjunction with optogenetic stimulation in brain (3,
141), we demonstrated the combined use of high-speed ultra-
high-resolution optical mapping with optical stimulation (64)
(Fig. 6B). Such an approach can be adopted for all-optical
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function. A: system for all-optical contactless cardiac elec-
trophysiology, built around a microscope. Optical actuation
is achieved through collimated light-emitting diode (LED)-
produced light; optical sensing of voltage (Vm) and calcium
(Ca2�) is done by voltage-sensitive dye (di-8-ANEPPS) and
calcium-sensitive dye (Rhod-4), respectively; shown are ac-
tual records (light pulse was 50 ms, 0.2 mW/mm2). Computer
controls the LED driver and the acquisition by the photode-
tectors (PD1, PD2), thus allowing for a closed-loop feedback
control. L, objective lens; LS, light source for imaging; Ex F
and Em F, excitation and emission filters, respectively; M,
DM1, and DM2, full and dichroic mirrors, respectively.
B: all-optical interrogation of cardiac function over time and
space by combining high-resolution optical mapping with
optogenetic actuation [used with permission from Jia et al.
(64)]: waves of excitation in cardiac monolayers, triggered by
electrical and optical pacing at 0.5 Hz, and captured by
activation maps. Color represents time of activation; iso-
chrones are shown in black at 0.15 s. Calcium transients
(Rhod-4) in response to electrical or optical stimulation are
shown from two locations, normalized fluorescence. Blue
marks indicate time of stimulation (electrical pulses were 10
ms; and optical, 20 ms each). In A and B, cell delivery
approach of ChR2 was used.
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interrogation of cardiac electrophysiology (voltage or calcium)
(Fig. 6A). Because of its completely contactless nature, it
naturally lends itself to parallelization and scalability, as well
as closed-loop feedback control.

The contact-requiring aspect of the classic electrophysiology
techniques (often implemented manually) has been the main
reason for the low-throughput nature of this method and has
prevented its parallelization over the last 60 years. It is only in
the last five years that modest success has been achieved at
developing a new generation of automated planar clamp (74,
81, 114), not by removing the contact requirement but by
achieving it using microfluidics and precise on-chip suction
onto microfabricated holes. Thus developed “planar patch”
currently allows for up to 48 channels of simultaneous clamp-
ing (93), a great improvement over the single-pipette manual
operation. Nevertheless, these new developments remain well
below (about 2 orders of magnitude below) the standard for
high-throughput screening methods needed in drug discovery
and in screening for possible side effects of already developed
drugs (114). Therefore, one of the possible translational aspects
of cardiac optogenetics is likely to come in realization of true
high-throughput screening technology for drug testing.

More than optical control of voltage. The common use of
microbial opsins, discussed here, relates to control of electrical
activity, i.e., TM voltage. However, recent efforts have been
made to extend optogenetics to include a broader range of tools
for sensing and control of various physiological parameters
(37), especially protein-protein interactions and cellular signal-
ing. A recent example of a cardiac application used flavin-
binding opsins to create light-induced fusion of calcium ion
channels (Cav1.2) for better understanding of how oligomer-
ization and channel clustering may affect the produced current
in cardiomyocytes (35). Furthermore, in addition to the micro-
bial class I opsins for direct control of voltage (Fig. 2), the
optogenetics toolkit has been expanded to include derivatives
of the vertebrate class II opsins, commonly referred to as
OptoXR (4). These are G protein-coupled proteins that can
interact with intracellular messengers, including cAMP, phos-
phatidylinositol 3-kinase, and 1,4,5-trisphosphate, and can pro-
vide precise optical interrogation of biochemical signaling.
Even though such uses may tolerate lower temporal resolution,
the selectivity and the spatial precision of manipulation offered
by optogenetics tools are still desirable. Table 1 summarizes
some of the available opsins for biochemical actuation.

Conclusions

Optogenetics has already proven to be an indispensable
research approach in neuroscience. A vast number of useful
light-sensitive actuation tools have been produced and made
publicly available. We discussed how such tools can be ad-
opted for cardiac applications and what challenges need to be
addressed. Obviously, new developments are needed to accel-
erate cardiac use of optogenetics, especially in vivo. Only a
handful of studies have been published to date, yet many
current research questions on cardiac arrhythmias are amenable
to optogenetic solutions, thus cardiac electrophysiology is
likely to embrace and benefit greatly from this emerging
technology.
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